Dear Sir/Madam:

Enclosed are the galley proofs of your article for IN VIVO.

We would like to call your attention to the following:

1. Please read thoroughly, correct, and return the proofs to the Editorial Office within 24 hours.
2. Proofs should be returned preferably by e-mail or fax. Delays in the return of these proofs will necessitate the publication of your paper in a later issue of the journal.
3. Please read the entire manuscript carefully to verify that no changes in meaning have been introduced into the text through language improvements or editorial corrections.
4. Corrections should be limited to typographical errors.
5. Should you require reprints, PDF file, online open access, issues or special author rate subscriptions, please fill the attached reprint order form.
6. If you opt for online open access publication of your paper, it will instantly upon publication be available to read and reproduce free of charge.
7. Should you require information about your article (publication date, volume, page numbers, etc) please call: +30-22950-52945 or send an e-mail to journals@iiar-anticancer.org.
8. Please provide your complete address (not P.O.B.), telephone and fax numbers for the delivery of reprints and issues.
9. Please feel free to contact us with any queries that you may have (Tel./Fax: +30-22950-53389 or +30-22950-52945, e-mail: journals@iiar-anticancer.org).

Thank you for taking the time to study these guidelines.

I greatly appreciate your cooperation and your valuable contribution to this journal.

Yours sincerely,

J.G. Delinasios
Managing Editor

Enclosures
Polydatin Administration Improves Serum Biochemical Parameters and Oxidative Stress Markers During Chronic Alcoholism: A Pilot Study

MARIA CATERINA PACE1, MARIA BEATRICE PASSAVANTI1, CATERINA AURILIO1, PASQUALE SANSONE1, ROSSELLA AURILIO1, SALVATORE DE MARIA2, STEFANIA LAMA3, ALESSANDRO FEDERICO4, GIAN PIETRO RAVAGNAN2, MICHELE CARAGLIA3 and PAOLA STIUSO3

Abstract. Aim: Polydatin, a hydroxystilbene derived from the rhizome of Polygonum cuspidatum, elicits hepatoprotective and neuroprotective effects through its antioxidant properties. The present study aimed to determine the effects of oral administration of polydatin in alcoholic patients in order to improve liver biochemical parameters, serum oxidative stress and mental state. We enrolled 20 chronic alcoholic patients hospitalized for rehabilitative therapy. The patients were divided into two groups receiving the following treatment regimes for two weeks: administration of an antioxidant nutritional supplement containing glutathione and vitamin C (group 1), or glutathione, vitamin C and polydatin (group 2). Results: The results of the present study show that the elevated plasma aspartate aminotransferase and alanine aminotransferase levels in patients after two weeks of alcohol withdrawal were significantly reduced by polydatin (group 2) when compared to group 1. Polydatin also significantly reduced lipid peroxidation levels. Finally, our preliminary data resulting from the analysis of the Mini-Mental Status suggest that polydatin improves cognitive performance. Conclusion: Daily dietary administration of polydatin should be considered for the prevention and treatment of liver disease and cognitive impairment in alcoholic patients.

Correspondence to: Michele Caraglia, MD, Ph.D., Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via De Crecchio 7, 80138, Napoli, Italy. Tel: +39 815665871, Fax: +39 815665863, email: Michele.caraglia@unina2.it and Paola Stiuso Ph.D., Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via De Crecchio 7, 80138, Napoli, Italy. Email: paola.stiuso@unina2.it

Key Words: Polydatin, oxidative stress, lipid peroxidation, liver injury, alcohol.
investigated in micelles and monolamellar liposomes by Fabris et al. (13). Studies also showed that it exhibited neuroprotective effects from brain injury induced by ischemia–reperfusion in the middle cerebral artery occlusion model, likely via inhibition of the expression of various cell adhesion molecules (14, 15).

The present study aimed to determine the effects of polydatin supplementation on chronic alcoholic patients during the first two rehabilitative weeks, recording liver biochemical parameters, serum oxidative stress and mental state.

Patients and Methods

Patient characteristics and treatment modalities. Twenty consecutive alcoholic patients were enrolled in this study. All the patients were informed of the research and gave permission for the use of their serum samples. The patients were hospitalized for two weeks by the Pain Therapy, Anesthesia and Emergency Toxicology Service, Second University of Naples, Italy. Patients were treated with a rehabilitative therapy that consisted of interruption of alcohol intake, and administration of an antioxidant nutritional supplement containing glutathione and vitamin C (group 1), or glutathione, vitamin C and polydatin (group 2). Ten heathy blood donors were the control group. All the patients and subjects enrolled in this study were matched for age, gender and socio-demographic characteristics. Glutathione was administrated at doses of 600 mg intravenously twice a day, vitamin C at 1 g per day and polydatin (Polidal®; GHIMAS 40033-Casalecchio di Reno, Italy) orally administered at doses of 40 mg twice a day. Venous blood samples from patients were collected before starting therapy (T0) and after 14 days from the beginning of the treatment (T14). Blood was carried on ice to the laboratory, and the serum was separated by centrifugation and stored at –80°C until analyzed. Laboratory parameters aspartate aminotransferase activity (AST), alanine aminotransferase activity (ALT), total cholesterol, triglycerides, and γ-glutamyltransferase (G-GT) were determined using standard clinical chemical methods. Venous blood samples obtained from these patients were used for the estimation of thiobarbituric reactive substances (TBARS) and nitric oxide. Both assays used in this work were described in De Maria et al. (16).

Mini-mental status examination (MMSE). The MMSE (17) was administered in ~10 min and included simple questions, such as the time and place of the test, as well as simple tasks, such as repeating lists of words, performing arithmetic calculations, using and comprehending language, and engaging in basic motor skills.

Statistical analysis. All data are expressed as the mean±S.D. The significance of the difference between the control and experimental groups was analyzed by unpaired Student’s t-test, and a value of \(p < 0.05 \) was considered statistically significant.

Results

Treatment with polydatin significantly ameliorates liver injury in alcoholic patients. Liver enzyme activity and protein levels of alcoholic patients enrolled in this study are indicated in Table 1. The patients on the first day of hospitalization (T0) had about 2-fold and 7-fold elevated levels of both AST and G-GT, respectively, compared to the reference values (AST=8-48 U/l and G-GT=9-48 U/l). ALT activity was near to the upper reference value (55 U/l). After two weeks of treatment (T14), in group 1, the average AST value was 47.2±11.97 (p=0.0515), whereas in group 2, AST and ALT significantly decreased to 34.9±7.7 (p=0.0131) and 19.7±7.1 (p=0.0342), respectively, compared to values at T0. In groups 1 and 2, G-GT values decreased 3.8- and 3.1-fold, respectively, but were still higher when compared to the reference values.

Polydatin significantly reduces serum lipid peroxidation in alcoholic patients. Aldehyde levels, final products of lipid peroxidation, were measured as TBARS and are reported in Figure 1. At hospitalization, in alcoholic patients, the serum TBARS values (0.0059±0.006 μM) were about 4-fold higher compared to the values obtained from 10 healthy participants (0.0015±0.0002 μM). After two weeks of alcohol abstinence in group 1 and group 2, the serum levels of lipoperoxide significantly decreased 1.5-fold (p=0.0141) and 3-fold (p≤0.0001), respectively, compared to values at T0. On the other hand, serum NO concentrations did not change in either group (data not shown).

Effect of polydatin supplementation on cognitive function. The assessment of global cognitive function in alcoholic patients can be readily carried out by the use of the MMSE (17). This instrument has been validated and extensively used to estimate the severity of cognitive impairments, as well as to follow the course of cognitive changes. The alcoholic patients enrolled in this study were matched for age, gender and socio-demographic characteristics. The MMSE was administered to all 20 alcoholic patients before and after and to group 1 and group 2 after 14 days of therapeutic treatment and the results are reported in Figure 2. Cognitive abilities (by MMSE) did not differ between groups at baseline. Alcoholic patients at T0 had significantly lower overall scores on the MMSE as compared to the control group (ten healthy blood donors) other 10 non-alcoholic subjects. Group 2 at T14 demonstrated a significant increase of cognitive functions compared to those of the whole patient cohort at T0. On the other hand, the recovery of the cognitive functions in group 1 was not significant.

Discussion

Hepatic metabolism of ethanol results in the generation of large quantities of cytosolic and mitochondrial NADH, leading to disruptions in normal metabolic processes in the liver. Factors contributing to the progression of liver damage and failure are the increased production of reactive oxygen...
species within the mitochondria as a consequence of the increased levels of mitochondrial NADH. These, in turn, cause mitochondrial stress leading to the triggering of the mitochondrial apoptotic pathway and hepatocyte death (18). Alcoholism remedies include promising novel therapeutic strategies involving phytochemicals and the use of natural extracts from plant foods aiming to reduce the risk of oxidative stress (19). In this light, polydatin is the natural precursor of resveratrol, presents a glucose molecule linked to resveratrol that modifies its pharmacodynamic and pharmacokinetic properties. In fact, polydatin uses specific membrane transporters for glucose to pass the brush-border membrane, mainly through sodium-dependent glucose transporter-1 (20, 21). Some studies reported that polydatin has cerebral-protective effects in the acute focal ischemia reperfusion model, such as the middle cerebral artery occlusion model (14).

The present study suggests the use of a therapeutic strategy for alcoholic injury based on the administration of oral polydatin. Our study evidenced the therapeutic efficacy of polydatin in vivo not only by reducing serum TBARS, markers of lipid peroxidation, but also by ameliorating the characteristic changes observed in alcoholic patients in liver cytolytic enzymes ALT and AST, reliable markers of liver damage (22). The elevated serum levels of AST and ALT have been attributed to damage of the structural integrity of the liver. One notable exception to the predominance of serum ALT activity in chronic liver disease is alcoholic liver disease where AST activity is generally higher than that of ALT. AST and ALT are released into circulation when cell membrane permeability increases after damage to hepatocytes (23). Nevertheless, treatment with polydatin for 14 consecutive days reversed these changes, suggesting that polydatin protected the liver against alcohol-induced hepatotoxicity. In a model of vascular dementia, the therapeutical potential of polydatin on learning and memory impairments was due, at least in part, to its direct antioxidant activity (24). At least other two beneficial mechanisms of the action of polydatin on brain function, over its direct antioxidants effects, have also been suggested to be due to its activity on NR2B nr2b and CDK5 cdk5 (25-27). Our data showed a significantly increase of the MMSE score in group 2, treated with polydatin, and a trend in this direction in group 1, encouraging the use of glutathione–polydatin combination to improve cognitive functions in alcoholic patients.

In conclusion, on the basis of these data and considerations, we suggest that daily intake of 80 mg of Table I. Liver enzymes and protein levels before (Alcoholics T0) and after two weeks of treatment in alcoholic patients.

<table>
<thead>
<tr>
<th></th>
<th>Alcoholics (T0)</th>
<th>Group 1 (T14)</th>
<th>Group 2 (T14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST (U/l)</td>
<td>83.8±13.45</td>
<td>47.2±11.97</td>
<td>34.9±7.7*</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>44.7±8.202</td>
<td>40.2±9.770</td>
<td>19.7±7.1*</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>225.0±23.24</td>
<td>169.1±32.7</td>
<td>153.9±17.2*</td>
</tr>
<tr>
<td>Lipase (U/L)</td>
<td>52.99±9.3</td>
<td>54.71±10.58</td>
<td>43.50±7.8</td>
</tr>
<tr>
<td>TRI</td>
<td>157.0±40.45</td>
<td>108.4±19.1</td>
<td>111.3±12.4**</td>
</tr>
<tr>
<td>G-GT</td>
<td>347.7±71.61</td>
<td>186.8±61.82</td>
<td>152.1±48.4</td>
</tr>
<tr>
<td>Ferritin (µg/L)</td>
<td>407±100</td>
<td>340±85</td>
<td>255±60</td>
</tr>
</tbody>
</table>

G-GT, γ-Glutamyltransferase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; CHOL, cholesterol; TRI, triglyceride; *p<0.05, **p<0.01, ***p<0.001 when compared to alcoholic patients before the beginning of treatment.
polydatin is active against serum lipid peroxidation and cognitive function impairment in patients with alcohol dependence.

Conflicts of Interest

The Authors have no conflicts of interest to disclose in regard to this study.

Acknowledgements

This work was supported by GLURES Srl, academic spin off University Ca’ Foscari Venice, Italy with the involvement of the Second University of Naples, Italy.

References

Received March 23, 2015
Revised April 10, 2015
Accepted April 15, 2015
April 15, 2015

Dr. Michele Caraglia

Re: Your manuscript No. 3238-P entitled «Polydatin Administration Improves...»

Dear Dr

Referring to your above manuscript for publication in in vivo, please allow us to use this form letter in reply:

1. Referee’s recommendations:
 □ Urgent to be published immediately.
 □ Accepted in the presented form.
 □ Accepted with minor changes.
 □ Accepted with grammatical or language corrections.
 □ Remarks:

2. Excess page charges.
 □ Your article has approx. xxx printed pages and is in excess of the allotted number by approx. xx printed pages. The charges are EURO € xxx per excess page, totalling EURO € xxxx
 We ask you to confirm acceptance of these charges.
 □ Your article includes xxx pages with color figures. The charges are EURO € xxx per color page,
 totalling € EURO xxxxx
 □ Our invoice will be sent by e-mail to the corresponding author.

4. Please order your reprints, pdf or online open access, now. This will facilitate our prompt planning of future issues and rapid publication of your article. Reprints will be delivered by rapid one-day delivery within one month from publication.

We would appreciate your prompt reply.
With many thanks,
Yours sincerely,

J.G. Delinasios
Managing Editor

EDITORIAL OFFICE: INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH
DELINASIOS G.J. & CO G.P., Kapandriti, P.O.B. 22, Attiki 19014, Greece. Tel.: 0030-22950-52945;
Tel & Fax: 0030-22950-53389; e-mail: journals@iiar-anticancer.org
Please type or print the requested information on the reprint order form and return it to the Editorial Office by fax or e-mail. Fees for reprints, PDF file, or online open access must be paid for in advance. If your paper is subject to charges for excess pages or color plates, please add these charges to the payment for reprints. The reprints are not to be sold.

PRICE LIST FOR REPRINTS WITHOUT COVER

<table>
<thead>
<tr>
<th>Page length</th>
<th>Online Access Fee*</th>
<th>Open PDF File Fee</th>
<th>Number of copies requested (prices are in Euro)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Euro)</td>
<td>(Euro)</td>
<td>50 100 200 300 400 500 1000 1500 2000 3000</td>
</tr>
<tr>
<td>1-4pp</td>
<td>400</td>
<td>175</td>
<td>140 285 337 388 453 504 851 1135 1470 2038</td>
</tr>
<tr>
<td>5-8</td>
<td>500</td>
<td>225</td>
<td>150 388 453 530 595 672 1083 1445 1832 2554</td>
</tr>
<tr>
<td>9-12</td>
<td>600</td>
<td>277</td>
<td>160 504 569 659 737 827 1341 1780 2219 3096</td>
</tr>
<tr>
<td>13-16</td>
<td>700</td>
<td>354</td>
<td>180 659 737 840 943 1046 1625 2141 2657 3676</td>
</tr>
<tr>
<td>17-20</td>
<td>800</td>
<td>419</td>
<td>200 788 879 982 1098 1227 1883 2451 3044 4244</td>
</tr>
</tbody>
</table>

*Online open access of an article published in 2015 is accompanied by a complimentary online subscription to in vivo.

For reprints with cover: Please add EURO 80.00 per 100 copies.

Postage: Please add 5% on the reprint prices.

Reprint Order Form

Of my paper No. **3238-P** comprising **4** printed pages, entitled **«Polydatin Administration Improves...»**

- accepted for publication in **in vivo** Vol. **29** No. **3**
- I require a total of **copies** at **EURO:**
- I do not require reprints.
- Please send me a PDF file of the article at **EURO:**
- Please provide Online Open Access of the article at the Stanford University Highwire Press website (at **EURO:**) immediately upon publication, and enter my complimentary online subscription to **in vivo**.
- Please send me a copy of the issue containing my paper at **EURO** 25.00.
- Please enter my personal subscription to **in vivo** at the special Author’s price of **EURO** 190.00 (☐ print; ☐ online) (☐ Year: **2015**).
- A check for the above amounts payable to DELINASIOS G.J. & CO G.P., is enclosed.
- Please send an invoice to (Billing Name and Address):
 - VAT number (For EC countries):
 - Name:
 - Address:
 - Country: City:
 - Postal code: e-mail:
 - Tel: Fax:
- Please send reprints to (Complete Address and Tel. no.):